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A CNDO-level all-valence electron method is presented which yields both good heats of 
formation and good bond distances for hydrocarbon molecules. The success stems from a careful 
analysis of the total energy of molecular systems. A new versatile formula is also proposed for the 
computation of Coulomb integrals. 
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1. Introduction 

In a recent review article on the semi-empirical all-valence-electron method, 
Klopman [1] wrote of "the painful dilemma of having to choose between a 
method that gives good heats of formation and poor bond distances, or poor 
heats of formation and good bond distances .... Its solution, if it can be found, 
would probably be the most important contribution in the field of semi-empirical 
calculation of large molecules". 

The widely accepted CNDO/2 method does not meet the challenge at all 
as will be shown later. The MINDO/3 method may be regarded as one of the 
closest solutions presently available to the problem. The method contains a large 
number of parameters and ad hoc conventions, and is a far cry from the original 
concept of the semi-empirical theory as proposed by Pariser and Parr, and 
Pople. Rather, the present authors are tempted to regard the approach typified 
by the MINDO/3 as a pseudo-quantum-mechanical model exquisitely built to 
simulate closely certain selected aspects of real molecular systems. Within the 
safe range of the applicability, such a method can be very useful and attractive 
for experimental chemists. It is to be remembered, however, that through a 
calculation by the method one is looking into a model world which would 
hopefully behave just like a real world for one's chosen interest. 

The Pariser-Parr-Pople (PPP) method was designed for the planar re-electron 
system. Many serious attempts were made to justify theoretically the daring 
approximations and semi-empirical arguments on which the PPP method was 
based. Probably the most important issue was the justification of the so-called 
zero differential overlap approximation in the two-electron energy integrals. The 
introduction of this sweeping approximation was actually dictated by an 
imperative that the number of two-electron integrals must be reduced drastically. 

In any large scale molecular energy calculation, the cost of evaluating the 
one-electron part is negligible compared with that of the evaluation of the two- 
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electron part. It is very important, however, to realize that the one-electron part 
is essentially negative and the two-electron part is positive and the total electronic 
energy rests on a delicate balance between these two parts which are opposite in 
sign. Thus, if some alteration or simplification is applied to the two-electron part 
of the total energy, the one-electron part must also be doctored very carefully, 
a consideration singularly missing in most of the theoretical discussions on the 
zero differential overlap approximation. 

In the present work, we shall first introduce a new formula for coulomb 
integrals which is flexible enough to simulate continuously from the rigorous 
formulas of Roothaan to the approximate formula of Ohno and, with a particular 
choice of the parameters, reduces itself to the formula of Mataga-Nishimoto. Then, 
we shall proceed to present an all-valence-electron method at the CNDO-level. 
One of the new features of the method is the way in which the one-electron part 
of the Hartree-Fock operator is parametrized so that the flexibility needed to 
accomplish the required delicate balance between the one-electron part and the 
two-electron part is greater than those in previous CNDO methods. 

In the last two sections, some numerical results will be described and 
discussed. The calculations were made for CH4, C2H 6, C2H 4, C2H2, C3H 4, 
C3H8, C4Hlo , and C6H 6. We have succeeded to meet the challenge mentioned 
at the beginning of the present section quite reasonably at the level of the CNDO 
approximation. 

2. Klondike Formula 

There are several different formulas commonly used for the computation of 
Coulomb integrals in semi-empirical molecular orbital calculations. People have 
more or less settled for Ohno's formula or Mataga-Nishimoto's formula in the 
case of the re-electron approximation (PPP method). In the development of all- 
valence-electron approximations the situation has been far from settled; some 
explicitly prefer using Roothaan's theoretical formula, while others carry over 
their habit acquired in the g-electron method to the new stage and use either 
Ohno's or Mataga-Nishimoto's formula. 

From the discussion presented in the preceeding section it has become clear 
that the choice of the formula for the computation of Coulomb integrals 
constitutes an important part of the semi-empirical adjustment of the individual 
method it would be convenient if we could have a suitably parametrized 
formula which would cover continuously the results of Roothaan's, Ohno's, and 
Mataga-Nishimoto's formulas. We have succeeded in devising such a new 
artificial formula for Coulomb integrals and utilizing it in our present work. 
This we call the Klondike formula, which has the following form 

1 
(/~#lvv)= R + A  (ina.u.) 

where R is the distance between the reference site of the atomic function # and 
that of v. 

A-----(a~e~.Ie+a~e'~R) -1 K~,/G > 0 
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where ~cu and ~ are the Klondike parameters for # and v centers respectively. 
In the present work we have restricted our considerations to the case ~, = ~c~ = ~c 
but our computer program accommodates the general case. When ~ =  0, the 
above formula becomes identical with Mataga-Nishimoto's formula. The value 
of a, can be determined in the following way; when R = 0 

( # # l v v ) =  A -1  = a ~  + a~. 

If the two atomic orbitals are identical, 

(,u,u I ~ # )  = 2a u . 

In Roothaan's method the value of (##l##) is determined by the choice of the 
atomic function. In Ohno's and Mataga-Nishimoto's method (##l##) is set to a 
certain empirical value, usually I , -  A~, where I v is the ionization potential and 
A u the electron affinity referring to the atomic "state" #. Thus 

a u = �89 u - Au) .  

In Tables 1 and 2 the following quantities are presented in order to compare 
the Klondike formula with Ohno's formula (Table 1) and with Roothaan's 
(Table 2). 

rlsls = ((1 s), (1 s) u I(1 s)~ (1 sL), 

rz,2s = ((2s). (2s).l (2s)~ (2s)~), 

�9 rZ, ls  = ( (2s) .  (2s ) .  10 s)~ (1 s)d. 
In Table 1 the Klondike parameter is taken as ~c = 0.4 and in Table 2 ~: = 0.8. 
The orbitals are ( l s )~  exp( -1 .2r )  and (2s)~ r exp(-1.8r) .  The values of ( I -  A) 

Table  1. Klondike  (~c = 0.4) and  O h n o  

rlsls F2s2s F2sls 

R a Ohno Klondike Ohno Klondike Ohno Klondike 

0.5 0.45988 0.44791 0.38856 0.38957 0.42443 0.41928 

1.0 0.42725 0.41347 0.36827 0.37143 0.39837 0.39318 

1.5 0.38552 0.37574 0.34053 0.34656 0.36391 0.36185 

2.0 0.34344 0.33888 0.31048 0.31904 0.32789 0.32954 

2.5 0.30531 0.30502 0.28146 0.29165 0.29423 0.29877 

3.0 0.27238 0.27492 0.25504 0.26593 0.26443 0.27075 

3.5 0.24450 0.24864 0.23172 0.24257 0.23870 0.24583 

4.0 0.22098 0.22587 0.21141 0.22174 0.21667 0.22397 

4.5 0.20110 0.20619 0.19381 0.20336 0.19783 0.20489 

5.0 0.18418 0.18916 0.17856 0.18721 0.18166 0.18827 

a (In a.u.). 
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Table 2. Klondike (x = 0.8) and Roothaan 

rlsls 

R a Roothaan Klondike 

F2s2s F2sls 

Roothaan Klondike Roothaan Klondike 

0.5 0.71631 0.71748 

1.0 0.63550 0.62535 

1.5 0.54140 0.52588 

2.0 0.45505 0.44068 

2.5 0.38376 0.37307 

3.0 0.32750 0.32041 

3.5 0.28364 0.27925 

4.0 0.24927 0.24665 

4.5 0.22197 0.22044 

5.0 0.19991 0.19903 

0.57671 

0 53943 

0 48678 

042838 

037226 

0 32303 

0 28205 

0.24875 

0.22181 

0.19987 

0.61120 0.63011 0.66646 

0.56768 0.58077 0.59857 

0.49739 0.51307 0.51294 

0.42695 0.44238 0.43453 

0.36638 0.37868 0.37010 

0.31708 0.32563 0.31894 

0.27754 0.28299 0.27849 

0.24576 0.24906 0.24625 

0.21996 0.22190 0.22023 

0.19877 0.19989 0.19891 

" (In a.u.). 

are 12.858eV for (ls) and 10.778eV for (2s). It is evidently shown that the 
Klondike formula exhibits a comfortable flexibility, which could be useful in the 
future development of the all-valence-electron method: In the original CNDO 
and INDO methods Roothaan's formula is used, while the MINDO and 
others adopt various formulas similar to Ohno's or Mataga's. Furthermore 
there are indications that in the CI (configuration interaction) calculations oJ 
the excited states of molecules we might have to make a choice even between 
Ohno's and Mataga's. It is to be mentioned that a somewhat similar formula 
was once proposed by Hinze [2]. 

3. A New Parametrization of All-Valence-Electron Theory 

In all-valence-electron methods at the level of the CNDO approximation a 
particular choice of parameters may predict certain properties of molecules in 
good agreement with experiment but use of the same parameters may cause 
other calculated properties to disagree with the experimental values. One of the 
most serious examples is the dilemma between good bond lengths and good heat 
of formation as mentioned in the Introduction. In the following, we have made 
an attempt to parametrize the theory in order to obtain good correlation between 
energies and bond lengths of some typical hydrocarbons such as methane, ethane, 
propane, butane, ethylene, allene, acetylene and benzene. 

In the SCF-LCAO-MO theory the molecular orbitals are determined by the 
equation 

F C  = $CIE 
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where F is the Fock matrix, t12 the matrix of the molecular orbital coefficients, 
IE the eigenvalue matrix of orbital energies, and $ the overlap integral matrix. 
These conventions are so well established that they do not call for any detailed 
elaborations. 

The elements of the Fock matrix may be split up into two parts 

where 

and 

Here 

and 

(one-electron part) 

G.~ = ~ Px~[(l~V [20.) - �89 v2)] 

(two-electron part). 

oct 

Pz, = 2 2 CziC., 
i 

(#v [20-) = .(.(#(1) v ( l ) ( ~ 1 ]  2(2) 0.(2)dV, dV 2 . 
\ r 1 2 /  

Under the zero differential overlap (ZDO) approximation all two-electron 
integrals (#v [2y) are zero unless # = v and 2 = 0.. The surviving integrals (~/~124) 
may be written as Yuv and further are assumed to depend on the atoms A and B 
to which/~ and 2 belong respectively and not on the type of orbitals. This is a 
common practice in the CNDO method in order to secure the invariance 
requirements. 

Under the ZDO approximation the two-electron matrix elements become 

G.v= �89 (u v) 

where the summation is over all basis functions. The one-electron part calls for 
a closer examination. The matrix elements may be written as 

Huu=(#I--�89 ~ <#[VBI#) 
B~A 

= u . -  Z vBI > 
BCA 

Huv=(#I--�89 2 (~lrclv> 
C:gA, B 

on A, and v on B). 
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It is to be noted that if appropriate expressions are given to {VA} the one-electron 
part can be computed explicitly, the only expensive part being the three center 
integrals (/~r Vclv). In the present work, however, we try to parametrize the one- 
electron part. The primary reason is that we attempt necessary adjustments to 
the drastic approximations in the two-electron part. Any change in the positive 
energy contribution from the two-electron part must definitely be counter- 
balanced by the negative contribution from the one-electron part. In order to 
incorporate this feature into the formula we introduce the approximation, 

(#1 VB [/A) = ZB(1 -- 2e- o, RAB) FAB. 

Here FAB is the electron repulsion integral which is typical in the CNDO/2 
method and ZB is the screened nuclear charge. 2 and co are regarded as global 
parameters in the present work. 

One finds a precedent of this kind of formula in the work of Fischer and 
Kollmar [3] ; 

where c~ is taken to be 0.22 and/~A is an orbital exponent. Although it was shown 
that the above formula works very well when RAB is small, it has obviously 
unacceptable asymptotic behaviour when RAB ~ OO. 

NOW we have 

H~, = U~ - Z ZB(1 -- 2e-~'RAB) FAB. 
B~A 

In the present work U, will be regarded as an adjustable parameter. Next, we drop 
the three-center integrals 

- Z (•]Vclv) 
C~A,B 

in Hu~ because the corresponding three-center two-electron integrals, say 
(#Vlacac), are also dropped under the ZDO approximation. H~ is now 
parametrized as 

n,,~ = �89 + /L )  S.~. 

The overlap integral here is not set to be zero; instead we calculate them using 
chosen set of Slater-type orbitals, which are to be used when one employs the 
Roothaan formula for the Coulomb integrals (##l vv). In the Klondike formula 
we have the parameters a, and •. 

Our computer program accommodates the following specifications; 
Atomic orbitals. (ls, 2px, 2py, 2pz) for H, (2s, 2px, 2py, 2p~) for (Li-F), and 

(3s, 3px, 3py, 3p~) for (Na-Cl), with the orbital exponents ((~, ~vx, (py, ~pz). 
Atomic parameters. Z (effective nuclear charge), Us, Upx, Upy, Ups, 

Klondike formula, a~, a w, apy, a w, and tc. (p[ VB[#): 2, co. 
The parameters, ~c, 2, co could be individual "atomic" parameters but in the 

present work these are used as global parameters. 
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It should be obvious that the parametrization of the present computational 
program is a very flexible one. If we are to observe both the coordinate and 
hybridization invariance for a general molecular geometry we have rather strict 
restrictions, 

as=avx=avy=avz ,  and ~s=~w=~vr=~v~,  

but in the present work only the coordinate invariance is observed. Then we have 
the following adjustable parameters, 

Us,  = u . .  = , 13s, IJp  = f l , ,  = fl, , 
as,  apx  : apy : apz  , 

~s, and ~p~ = ~py = ~pz" 

There are, of course, a vast number of planar molecules, for which we have 

as, apx = avy, ap=, {s, ~px = {vy, and {v=. 

Although we have not exploited this possibility it could be very useful to 
establish a link between the PPP theory and the CNDO-type theory by intro- 
ducing the parametrization suggested above. 

4. Applications 

In the present work we have limited ourselves to hydrocarbons and we have 
used mostly the ls orbital only for hydrogen. We have tested the effect of 
inclusion of 2px, 2py, and 2pz orbitals on hydrogen in the case of benzene 
because we have a reference work by Ermler and Kern [4]. As is expected their 
effect is negligible in the ground state properties but for excited states with 
considerable Rydberg character the inclusion could be useful as Salahub and 
Sandorfy [-5] demonstrated. 

In the following CNDOR implies the calculation in which Roothaan's 
explicit theoretical formulas for coulomb integrals are used as is the case in the 
CNDO/2 method. On the other hand CNDOK means that we have used the 
Klondike formula with ~c = 0.4 which would simulate Ohno's formula for the 
Coulomb integral. In Table 3 the values of parameters are compared among 
CNDO/2, CNDOR, and CNDOK. 

Ionization potentials I and electron affinities A when necessary are the same 
as in the CNDO/2 method. 

5. Heat of Atomization 

For comparison with experimental values we have calculated heats of 
atomization in the following way: In general the energy of "atom" in the s"p" 
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Table 3. Parameter values 

8 in eV CNDO/2 CNDOR CNDOK 

8H,is 9.0 9.0 9.0 

8C,2s 21.0 21.0 17.0 

8C,2p 21.0 17.5 17.0 

U in eV 

UH,ls 17.38 17.06 13.06 

UC,2s 70.2713 70.8399 51.774 

UC,2p 61.7923 62.5203 43.295 

~H,ls 1.2 1.16 

~C,2s = r 1.625 1.8 

1.2 

1.8 

Z 

ZH,Is 1 1 

Zc,2s = Zc,2p 4 4 

A t to 

IH = IC 0 0.136 

~H = ~C 0 0.75 a.u.-i 

-0.343 

-i 0.45 a.u. 

electronic configurat ion is assumed to be given (in a.u.), 

E(smp ") = m U s + n Up + �89 + n) (m + n - l) (ssl pp) ,  

(sslpp) = �89 [(sslss) + (pplpp)l  , 

(sslss)=~sa6 (~, ( p p l p p ) = ~ -  256 (p" 

Thus, f rom Table  4 we have in C N D O / 2  

E(H) = - 0.63874 a.u. 

E(C) = - 5 . 8 7 8 9  a . u .  
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Table 4. Comparison of calculated and observed heats of atomization (in a.u.) 
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AHatom 
a 

Molecule CNDO/2 CNDOR CNDOK Observed 

CH 4 1.3954 0.6961 0.7204 0.6693 

C2H 2 1.7336 0.6781 0.6267 0.6478 

c2H 4 2.1825 0.9294 0.9397 0.8979 

C2H 6 2.6571 1.1857 1.2757 1.1350 

C3H 4 2.9920 1.1898 1.1705 1.1254 

C3H 8 3.8951 1.6559 1.7245 1.6033 

c4HI0 5.1466 2.1273 2.3203 2.0736 

C6H 6 6.2791 2.1682 2.4000 2.1847 

" From Wiberg, K.B.: J. Am. Chem. Soc. 90, 59 (1968). 

and in C N D O R  

E(H) = - 0.62698 a.u. 

E(C) = - 5.8789 a.u. 

The above approach is in line with Wiberg [6], one of our reference work. 
However, in our C N D O K  calculation we have decided to use a straightforward 
value for E(H), -0 .5a .u .  This choice is not made on the ground of better 
overall results. The heat of atomization is given by the formula, 

AHatom = (Number of "C" atoms) x E(C) 

+ (Number of "H"  atoms) x E(H) - E r 

where E r is the total energy obtained from the computer program. 
Table 4 shows the results. In both CNDO R and C N D O K  agreement with 

experiment is not really perfect but acceptable while CNDO/2 yields too large 
values. 

6. Bond Lengths 

The calculation of the molecular total energies was done by varying the 
C - C  and C - H  bonds keeping basic molecular symmetry intact. The calculated 
bond lengths corresponding the lowest total energy are shown in Table 5. It is 
seen that C NDOR is somewhat inferior to CNDO/2 especially as for C - H  
bond lengths. In the table some C - H  bonds are missing mainly for economy 
reasons. The C - H  bond lengths were held fixed at the observed values. 
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Table 5. Comparison of calculated and observed bond lengths (in A) 

Molecule Bond CNDO/2 CNDOR CNDOK Observed a 

CH 4 C-H 1.124 1.174 1.224 1.106 

C2H 2 CHC 1.205 1.239 1.339 1.205 

C-H 1.059 1.203 1.203 1.059 

C2H 4 C=C 1.356 1.356 1.339 1.332 

C-H i.i15 1.130 1.203 1.084 

C2H 6 C-C 1.406 1.506 1.500 1.536 

C-H 1.128 1.228 1.232 1.107 

C3H 4 C=C 1.312 1.342 1.455 1.312 

C-H 1.082 1.220 1.240 1.084 

C3H 8 C-C 1.513 1.526 1.685 1.526 

C-H 1.090 1.190 1.090 

c4HI0 C-C 1.513 1.540 1.640 1.539 

C-H 1.090 1.190 i.i0 

C6H 6 C-C 1.397 1.423 1.565 1.397 

a Interatomic distances, Chem. Soc. (London) Special Publ. No. 18 (1965), 

7. Orbital Energies 

Table 6 contains two representative studies on the occupied orbital energies 
of the molecules: First it is shown that the orbital energies calculated by CNDOR 
are in good agreement with those of Ermler and Kern [4] who recently 
performed an ab initio Hartree-Fock-Roothaan calculation of good accuracy. 
For  comparison we have also included in the table the orbital energies 
calculated by CNDO/2.  It is to be noted that the CNDO/2  ordering of the El ,  
and hA2, does not agree with that of Kern whereas our result from CNDOR 
agrees with it. Similar results are also found in the case of ethylene: the orbital 
energies and the ordering calculated by C N D O R  are superior to those from 
CNDO/2  when compared with the results of Moskowitz and Harrison [7]. 

8. Discussion 

In view of the results presented here, we may conclude that good theoretical 
values for heats of formation can be obtained through the proper parametrization 
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Table 6. Orbital energies (in a.u.) 
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C6H 6 : (D6h symmetry) 

CNDO/2 CNDOR Kern a 

Alg -1.8728 

Elu -1.3872 

E2g -1.1098 

Alg -I.0632 

Blu -0.8590 

B2u -0.7896 

Elu -0.6966 

WA2u -0.7193 

E2g -0.5156 

~Elg -0.5104 

-1.3996 

-1.i098 

-0 8482 

-0 7571 

-0 5975 

-0 5439 

-0 5204 

-0 5056 

-0 3949 

-0 2890 

-1.1487 

-i.0138 

-0.8230 

-0.7081 

-0.6427 

-0.6187 

-0.5872 

-0.4979 

-0.4946 

-0.3337 

C2H 4 : (D2h symmetry) 

CNDO/2 CNDOR Moskowitz & Harrison b 

A -1.4061 -1.2094 -1.0581 g 

B3u -i.0054 -0.8540 -0.8063 

B2u -0.8973 -0.6747 -0.6601 

A -0.7147 -0.5624 -0.5829 g 

Blg -0.5748 -0.4784 -0.5175 

nBlu -0.5836 -0.3873 -0.3815 

" Ermler, W.C., Kern, C.W.: J. Chem. Phys. 58, 3458 (1973). 
b Moskowitz, J.W., Harrison, M.C.: J. Chem. Phys. 42, 1726 (1965). 

of a CNDO-level  semi-empirical theory. The essential point we have brought 
forward is the importance of the balance between the one-electron (negative) and 
the two-electron energy (positive). The use of the ZDO approximation was, to 
some extent, justified by introducing the notion of the orthogonalized atomic 
orbitals in the PPP theory but it seems to be difficult to maintain the same logic 
and subsequent justification in the all valence-electron theory. However we keep 
it as a necessary evil in order to make the calculations feasible for large molecules. 
Under the ZDO approximation many terms in the energy formula are eliminated. 
If there arises any appreciable unbalance due to the effect of these neglected terms 
between the one- and two-electron parts, then we are bound to have a poor 
total energy value. It is our opinion that this has been the case with most of the 
methods thus far proposed by various authors. We have attempted to maintain 
the balance by introducing two parameters, 2 and co, in the one-electron part of 
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the diagonal energy matrix elements, The effectiveness of the balancing mechanism 
introduced here has aptly been demonstrated by showing that it could adjust 
itself to cope with the two widely different formulas for electron repulsion 
integrals (Roothaan's and Klondike with tc---0.4) with the results of more or less 
equal quality. 

The introduction of a flexible two-electron energy integral formula, Klondike 
formula, should also be viewed from wider scope than actually shown in the 
present work. Considering that there still remains a considerable amount of the 
flexibility in the method we can be hopeful about the simultaneous prediction 
of a variety of molecular properties including both ground and excited states. 
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